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bosonic part of) the projective light-cone (zero-radius) limit of a string on an AdS5 back-

ground, where Schwinger parameters give rise to the fifth dimension. Quantum effects gen-

erate dynamics for this dimension, producing an AdS5 background with a running radius.
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1. Introduction

It has been argued that for a string theory to describe 4-dimensional gauge theories (QCD

strings) it must live in five dimensions [1]. For the usual bosonic string theory outside of

the critical dimension, the fifth dimension arises from the conformal anomaly, the Liouville

field. Consistent quantization of Liouville theory that preserves the conformal symmetry

is essential for the understanding of non-critical strings and is still an active research area.

Another way to understand the quantum string is to replace the world-sheet by a

random lattice: The lattice is the Feynman diagram of “partons” that compose the string:

Each link is identified with a propagator, and the vertices are the interaction vertices [2].

The randomness of the lattice, corresponding to different geometries, is associated with

the summation over different Feynman diagrams [3]. This approach was first applied to

understand pure 2D quantum gravity, and in conjunction with the 1/N expansion (which

defines “planarity” for diagrams) [4], the connection was made with the Liouville approach

in the continuum limit [5].

However, the bosonic (or super [6]) lattice string has several unsatisfactory properties at

large transverse momentum for the underlying parton theory, such as Gaussian propagators

and no particle degrees of freedom in the deconfinement phase. In [7] one introduces a

Schwinger parameter to give the usual 1/p2 propagators, which gives rise to a QCD-like

string that predicts the correct dimension 4 for preserving T-duality. For such a theory

the open string is identified as “mesons” while the closed string is “pomerons”. However,

little success has been obtained in this approach except for scalar partons.

The AdS/CFT correspondence also gives a correspondence between gauge theory and

string theory [8]. The IIB string states correspond to color-singlet bound states of N=4

super Yang-Mills. An important ingredient is “holography”, which conjectures that the
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dynamical properties are uniquely determined by the four-dimensional boundary theory.

The background AdS5⊗S5 has isometries SO(4,2) for AdS5 and SO(6) for S5, which are the

same as the 4-dimensional conformal group and the SU(4)R of N=4 SYM. It was shown

in [9] that by taking another limit, the projective light-cone limit, one obtains a different

holography where the fifth dimension is still present, albeit non-dynamical to leading order.

Random latticizing this superstring it was shown that the bosonic part corresponds to

a wrong-sign φ4 theory similar to that used in [7], while the entire superstring gives a

manifestly N=4 supersymmetric action for a matrix field identified with N=4 SYM.

In this paper we take the previous QCD-like string [7] and perform a one-loop calcula-

tion. A dynamical AdS radius is generated for a fifth dimension arising from the Schwinger

parameter. (This field already appears classically, and so is not the Liouville mode.) This

radius runs: At high energy the theory is asymptotically free in this dynamically produced

coupling, producing four-dimensional space as the projective light-cone limit [9].

2. QCD-like strings

In the usual random lattice quantization approach one expresses the string world-sheet as

a random lattice, using the irregularity of the lattice to represent world-sheet curvature:
∫

DX e−S ∼
∫

∏

i

dxi e−
1

2

P

〈ij〉 (xi−xj)
2+µ

P

i 1−log N(
P

j 1−
P

〈ij〉 1+
P

I 1) (2.1)

where xi are the vertices, 〈ij〉 label the links or propagators and I are the faces. Thus

summing over different lattices corresponds to integrating over different geometries of the

world-sheet. One can then identify the lattice with the Feynman diagrams of some un-

derlying (parton) field theory. One can obtain the Feynman rules from the lattice string

action: (1) The usual 1
2 (∂X)2 term becomes on the lattice 1

2(xi − xj)
2, giving a Gaussian

propagator for the parton theory. (2) The 2D cosmological term gives the world-sheet area

and corresponds to the number of vertices, and is thus related to the coupling constant.

(3) The curvature term has the usual interpretation of the 1/N expansion in the parton

theory.

The Gaussian propagators produce non-parton like behavior at large transverse mo-

menta [10] and produce no degrees of freedom beyond the Hagedorn temperature [11] (there

are no poles in the propagator), where there should be parton degrees of freedom in the

deconfinement phase. One can incorporate the usual 1/p2 in the random lattice approach

by using Schwinger parameters [7]. That is, we can write:

1

p2
=

∫ ∞

0
dτ e−τp2

(2.2)

A Feynman diagram with non-derivative interactions can now be written in a first-quantized

form: ∫

dpijdxidτij e−
1

2

P

〈ij〉[τijp2

ij+i(xi−xj)·pij ] (2.3)

Integration over the vertices xi gives momentum conservation at each vertex, while the

τ integration gives the propagators. Taking the underlying parton theory as wrong-sign
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φ4 theory, wrong sign meaning a negative coupling constant since the string amplitudes

are always positive, then each vertex has two independent propagators. Therefore in the

continuum limit τmn has two components at each point on the world-sheet which is a

symmetric traceless tensor. This suggests the following continuum action:

L =
1

2
τmnpm · pn + λτmngmn + ipm · ∂mx + Lg

Lg =
√−g

(

Λ − R ln N +
c

24
R

1
R

)

(2.4)

(where τmn is the inverse of τmn). Lg, which depends only on the world-sheet metric,

includes the cosmological constant and curvature terms, while λ is the Lagrange multiplier

enforcing the traceless condition. Integrating out p,

L =
1

2
τmn(∂mx) · (∂nx) + λτmngmn + Lg (2.5)

The R(1/ )R term was expected from quantum effects. (It really belongs in the

effective action; in the continuum case it comes from ghosts, but on the lattice the analog

of ghosts is obscure.) We can determine its coefficient by comparison with ordinary string

theory: In D = 0 there is no x, and τ becomes irrelevant, so there the QCD-like string

is identical to the usual string. The metric gmn then describes simply the counting of

Feynman diagrams, with respect to the 1/N expansion, with no dynamics. But we know

the continuum limit there: It’s the usual action for the D = 0 subcritical string. Thus,

quantization of the metric will produce the usual c = −26 from the ghosts, which is now

not canceled by x, which does not couple directly to the metric. (We could also choose a

gauge in terms of τ rather than g, which is more practical for the rest of the analysis, but

then g would be propagating and its one-loop evaluation more complicated.) Such a term

is necessary also because in its absence the equations of motion for g and the constraint

induced by the Lagrange multiplier

λτmn = −1

2
Λ
√−ggmn, τmngmn = 0 (2.6)

are incompatible. After choosing a gauge (in terms of either g or τ), this part of the theory

totally decouples from the x fields classically but comes in through a Liouville mode in the

effective action to maintain local scale invariance as we will show.

Since there are no self-interactions in x, one-loop calculations give the complete con-

tribution of x to the effective action in τ . In practice one first introduces vertex operators

that depend only on x; integrating out x then gives this τ action, as well as the usual

factors of the x Green function (now τ -dependent) multiplying external-line momenta and

polarizations.

3. One loop integral

We now compute the one-loop two-point integral for the τ field. This will be sufficient to

determine the contribution of x to the renormalization and renormalization group behavior
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of the theory. We assign the vacuum expectation value 〈τ〉ab for the tree-level x propagator,

and then restore an arbitrary τ background using 2D coordinate invariance.

In arbitrary world-volume dimension D (where on the world-sheet D=2) we calculate

the 2-point effective action

Γ[τ ] =

∫

dDp

(2π)D/2
A(τ, p) (3.1)

A = −d

2

∫

dDk

(2π)D/2
τab(p)

(k + 1
2p)a(k − 1

2p)b(k+ 1
2p)c(k− 1

2p)d

〈τ〉kl(k+ 1
2p)k(k+ 1

2p)l〈τ〉mn(k− 1
2p)m(k− 1

2p)n
τ cd(−p) (3.2)

With space-time dimension d=4 the integral gives:

1

4
√

〈τ〉

(

1

8
〈τ〉klpkpl

)D/2 Γ(1
2 )

Γ(D+3
2 )

Γ

(

1 − D

2

)

Γ

(

D

2
+ 1

)

×
{

2

D
[(τab〈τ−1

ab 〉)2 + 2τac〈τ−1
cd 〉τdb〈τ−1

ba 〉] + 1

2
τab〈τ−1

ab 〉 pcpd

〈τ〉klpkpl
τ cd

− 1

D
τab〈τ−1

bc 〉 papd

〈τ〉klpkpl
τ cd −

(

1 − D

2

)

τab 4papbpcpd

(〈τ〉klpkpl)2
τ cd

}

(3.3)

with 〈τ〉 = det〈τab〉. Using D = 2 + 2ǫ we arrive at

A(τ, p) =
1

√

〈τ〉

{[

1

ǫ
+ log (〈τmn〉pmpn)

]

I(τ, p) − 1

6
τab papbpcpd

〈τmn〉pmpn
τ cd

}

(3.4)

I(τ, p) = τab

[

− 1

6
papb〈τ−1

cd 〉− 1

24
〈τmn〉pmpn

(

〈τ−1
ab 〉〈τ−1

cd 〉+2〈τ−1
ac 〉〈τ−1

bd 〉
)

+
1

6
papc〈τ−1

bd 〉
]

τ cd

(A modified minimal subtraction scheme has been implemented by adding a finite number

to 1/ǫ.)

4. Manifestly covariant effective action

We can obtain part of the full effective action by promoting the vev’s 〈τmn〉 and 〈τ−1
mn〉 to

the full field, using symmetry principles such as coordinate invariance. First we write

τmn =

√
γγmn

(x5)2
(4.1)

γmn is like a second world-sheet metric (in addition to gmn, but Euclidean instead of

Minkowskian), with γ = det γmn. (In D=2 this is a separation of τ into its determinant

and determinant-free parts.) This introduces an extra degree of freedom that can be gauged

away by a local scale invariance:

γmn → ρ2γmn x5 → ρ
2−D

2 x5

Since this symmetry holds for arbitrary dimensions, the effective action should still retain

this symmetry. Furthermore the one-loop action should be zero degree in x5, since it can

be seen as counting the number of loops.
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These two requirements allow the following two terms:

A
1

ǫ

√
γ x

2−3D
D−2

5

[

x
4

D−2

5

(

D − 2

4(D − 1)
Rγ − γ

)]D/2

x5

and a pure “gravity” term (independent of x5)

B
1

ǫ

√
γ

(

Rγ
1

Rγ − 4D−1
D−2 γ

Rγ − Rγ

)

where γ = 1√
γ ∂m

√
γγmn∂n. Plugging in D = 2 + 2ǫ we have

−√
γ

{

Ax−1
5

[

1

ǫ
+ log(− γ)

]

γx5 + B

(

1

ǫ
Rγ +

1

2
Rγ

1

γ
Rγ

)}

(4.2)

The coefficients A and B can be determined by comparing to the previous quadratic

expansion (3.4). We express τ in terms of x5 and γ, and expand both about their vev’s:

x5 = 〈x5〉 + x̃5

and similarly for γ. The x̃5-γ̃ crossterm cancels, as expected from (linearized) coordinate

invariance. The (x̃5)
2 term is

〈√γ〉
〈x5〉2

{

2x̃5

[

1

ǫ
+ log

(

− 〈γ〉
〈x5〉2

)]

〈γ〉x̃5 +
2

3
x̃5 〈γ〉x̃5

}

(4.3)

(This is equivalent to coupling x to just a scalar.) One can then see A = 2. (The last

term is finite and local, and so is regularization dependent, and can be canceled by a finite

renormalization. The same applies to the log〈x5〉 term.) Similarly, from the (γ̃)2 term one

finds B = −1/3. (This is equivalent to the usual calculation in a background consisting of

just a metric.) Thus the final form of this part of the bare effective action is

√
γ

{

−2x−1
5

[

1

ǫ
+ log(− γ)

]

γx5 +
1

3

(

1

ǫ
Rγ +

1

2
Rγ

1

γ
Rγ

)}

(4.4)

If one tries to convert the above action into τ , using τ−1/4 = x5 and
√

γγmn =

τmn/
√

τ , one immediately arrives at the difficulty of rewriting terms depending only on

γmn, since it is impossible to express it in terms of τ . Furthermore, renormalization of the

action (4.4) spoils the scale invariance the unrenormalized effective action was proclaimed

to preserve! This is not a surprise, since the pure gravity term (in terms of metric γmn,

not the world-sheet metric gmn) is the usual 2D gravity effective action, which is known to

have a conformal anomaly after renormalization. We discuss these difficulties in the next

section, and show that one must include the Liouville mode to restore covariance.

5. Renormalization

The appearance of a scale anomaly in the “B” term is clear, since it has the same form

as the usual gravitational effective action except for the replacement of g with γ. The
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unrenormalized effective action is locally scale invariant by construction, but the infinite,

local counterterm breaks the invariance, leaving the renormalized effective action (their

difference) anomalous. The origin of the anomaly in the “A” term is even simpler: It

works in the same way as the scale anomaly for massless matter fields. (In this case, the

analog is x5.) At D = 2 + 2ǫ under scaling that term in (4.2) becomes

−√
γAx−1

5

[

1

ǫ
(1 − 2ǫ log ρ) + log(−ρ2

γ)

]

γx5 (5.1)

which is indeed invariant. Note the second term comes from the ǫ piece in
√

γ′ =
√

γρ−2−2ǫ,

which is not present in D=2.

However, unlike the usual scale anomaly for g, which re-introduces the scale of the

metric as a physical Liouville mode, the scale anomaly for γ is a fiction, since γ was

introduced only as a change of variables from τ . This second anomaly can be avoided by

using the original Liouville mode of g in its place.

The procedure is to scale γ by a quantity that will eliminate its anomaly while pre-

serving all physical properties. As seen above, since the unrenormalized effective action is

scale invariant, the only effect will be to add a finite, local counterterm to the renormalized

effective action.

A similar problem appears in the expression (3.4) for the two-point function in an ar-

bitrary constant background: There, instead of γ we find τ , which has instead the problem

that it breaks coordinate invariance because τmn is a density. But τ is a scaling of γ, so

the solution is the same. (In fact, we already needed finite counterterms to relate (3.4)

to (4.4).)

Thus the conditions the argument of the log should satisfy with the scaled version of γ

(or τ) are: (1) dependence on γ only through τ (i.e., γ-scale invariance), (2) degree zero in

τ (since it counts the number of loops), or equivalently space-time dimensionlessness (since

only τ and x carry this dimension), and (3) coordinate covariance, or equivalently world-

sheet dimensionlessness (global scale invariance is a particular coordinate transformation).

Since γmn is itself a scaling of τmn, the only available quantities with which to scale τmn

are the determinants of τmn and gmn, thus satisfying condition (1). Since the determinant

of g is required, its Liouville mode is necessarily introduced. Condition (2) is then satisfied

by multiplying τmn by an appropriate power of its determinant, while (3) is satisfied by

multiplying by an appropriate power of g’s determinant. This procedure also results in a

rescaling of x5, as easily obtained by noting that τ , as expressed in terms of γ and x5, is

invariant under a rescaling of γ and x5 by definition. The result in arbitrary dimensions is

then

γmn → τmn

(
√

τ
√−g)2/D

, x5 →
√

τ
− 1

D
√−g

D−2

2D

Note that now
√

γ =
√−g, so we have effectively separated the determinant of τmn and

its unit-determinant part into x5 and γmn.

This substitution can be applied to fix the unrenormalized effective action (4.4), but

it’s simpler to apply directly to the renormalized one, since its net affect is just the addition

of finite counterterms to restore the above properties. Then the final result for covariantly

– 6 –
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renormalizing (4.4) is

ΓR[τ ] =
√

γ

[

−2x−1
5 log

(

− γ

m2

)

γx5 +
1

6
Rγ

1

γ
Rγ

]

(5.2)

where m is the renormalization scale and

x5 = τ−1/4, γmn → τmn

√
τ
√−g

or we can simply treat x5 and γmn as new fields replacing τmn, with the constraint

√
γ =

√−g

The final renormalized action written in the component fields is

L =
1

2

√
γγmn∂mxi∂nxi + r2√γγmn∂mx5∂nx5

(x5)2
+ λτmngmn + Lg (5.3)

(or we can replace λτmngmn with λγmngmn), where r2 corresponds to the log term in ΓR,

and the renormalization-invariant mass scale resulting from dimensional transmutation is

M2 = m2e−r2/4

so that the coupling 1/r2 is asymptotically free. (There could also be an Rγ term, but it’s

topological and hence the same as an addition to the R term in Lg.) At this point the

only breaking of global scale invariance in the effective action is through the log term, with

its scale M2, and the cosmological term, with its scale Λ. Thus, the Liouville mode can

always be redefined by a constant scale so that these constants appear only through the

combination Λ/M2, which gives the coupling of the parton theory. (In fact, without this

quantum effect, Λ could be scaled away.)

One can choose the coordinate gauge
√

γγmn = δmn; then the Lagrange multiplier

enforces the constraint δmngmn = 0, leaving only two components in the world-sheet metric:

One will be the Liouville mode, contributing a factor of
√

g that sets the scale for the

running.

6. AdS5 geometry

The first term in (5.3) looks like the metric for AdS5. Indeed the AdS5 metric

ds2 = r2 (dxa)
2 + (dx5)

2

(x5)2
(6.1)

can be transformed into that of (5.3) by the rescaling x5 = x′
5r

2 so that the metric is

ds2 =
(dxa)

2 + r2(dx′
5)

2

(x′
5)

2
(6.2)

In [9] one considers the classical Type IIB string propagating in AdS5 ⊗ S5 background

in the zero-radius limit, that is, with the metric in (6.2) and taking the r → 0 limit,

– 7 –
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which becomes the projective light-cone. It was shown in that limit the S5 shrinks to zero

and the fifth dimension of the AdS5 becomes non-dynamic. Taking the random lattice

approach the fifth dimension becomes a Schwinger parameter and the world-sheet has a

natural interpretation as a planar Feynman diagram. (In the bosonic case, it is a diagram

of massless wrong-sign φ4 theory.) The coupling constant of the field theory was identified

as r ∼ Ng2; therefore, this limit corresponds to weak coupling of the field theory.

Here we consider quantum corrections to the (bosonic) continuum world-sheet theory,

corresponding to performing loop-momentum (but not Schwinger parameter) integration

in the Feynman diagrams of the field theory. (This is the usual first step in evaluating

diagrams.) We see that the Schwinger parameter generates the fifth dimension, and the

AdS5 metric arises. The radius r, or the coupling constant for the field theory, runs in

energy above some scale M set by the Liouville field. Recalling the underlying parton

theory is wrong-sign φ4, which is asymptotically free, in the high-energy limit the theory

is at weak coupling. This is reflected in the fact that r → 0 at high energies, and we are

forced onto the projective light-cone of the original geometry. On the other hand, as the

energy approaches the scale M , r becomes large and the perturbative picture is no longer

valid. This is in contrast to earlier effective string theories derived from four-dimensional

field theories such as Abelian Higgs models [12]. In these theories one expands around a

classical long string configuration; then the conformal anomaly can be expanded in inverse

powers of string length. In the infinite length limit the theory is perfectly conformally

invariant at the quantum level. In our QCD-like string the emergence of a string in AdS5

is really a weak-coupling duality in spirit closer to discussions of string bits, where the

correspondence of perturbative N=4 SYM (the limit of vanishing ’t Hooft coupling) and

tensionless IIB string is examined.

Note that, since the AdS radius r is really a log , some of the isometry of the usual

AdS5 metric is broken. One can see that the transformations that mix x5 with xa (these

are the conformal boosts) no longer preserve the action. This is not a surprise since the

underlying φ4 is not strictly conformal due to the running of the coupling.

An interesting extension of this is the twistor string [13, 14]. In [13] it was shown

that twistor strings are dual to perturbative N=4 SYM in 4 dimensions at least at tree

level. It would seem to imply that the twistor string is somehow related to the usual

type IIB string in the large N limit where the closed-string coupling is suppressed. If

one tries to extract perturbative N=4 SYM from the AdS/CFT correspondence, it should

correspond to a classical string (no closed string coupling) in the r2/α′ → 0 limit. This

limit can be taken in two ways: r2 → 0 or α′ → ∞. The first limit is the limit taken

in [9], and explicit calculation of the partition function on both sides seems to agree in this

limit [15]. The second is taking a tensionless limit. In [14], it was shown that the bosonic

part of the ADHM twistor string is really the tensionless limit of the QCD-like string. The

ADHM twistor string is a closed string with one chirality which gives the same amplitude

as Berkovits’ open twistor string. Since here we show that the QCD-like string indeed lives

in an AdS background, then the twistor string action appears naturally in the tensionless

limit of the type IIB string taken as the projective light-cone limit (see [16] for discussion

on search of tensionful parent of the twistor string). Of course this discussion is really in
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the framework of the bosonic part of the IIB string action; combining with the fermionic

part one encounters the difficulty of rewriting second-class constraints in terms of first-class

(perhaps by introducing new gauge symmetry) and consistently reducing the number of κ

symmetries. .
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